Uncertainty analysis for dose measurements using OSLD nanoDots

Stephen F. Kry, Paola Alvarez, Francesco Stingo, David Followill

Imaging and Radiation Oncology Core QA office at Houston
The University of Texas MD Anderson Cancer Center, Houston, TX
AAPM Annual Meeting
2014
Introduction

• NanoDots are a popular dosimeter
• IROC Houston (formerly RPC) uses OSLD to monitor beam output
 – Reference conditions

• How precise is the OSLD program?
Dose calculation

• Signal: \[M_{cor} = \left(\sum_{n} \frac{M_{raw,n} \cdot k_{d,n}}{n} \right) \cdot k_{s,i} \]

• \[D = M_{cor} \cdot C_D \cdot k_E \cdot k_F \cdot k_L \]

• Calibration factor \((C_D)\) is based on irradiation of standards to a known dose

• \[C_D = \frac{D_S}{M_{cor,s} \cdot k_{F,s} \cdot k_{L,s}} \]
Methods

• Estimated Uncertainty in each parameter
• Based on commissioning data for batches of 5,000 – 20,000 dosimeters
• Fancy error propagation
 – Recursive solving of:
 \[\text{var}(XY) = \text{var}(X)\text{var}(Y) + \text{var}(X)E(Y)^2 + \text{var}(Y)E(X)^2 \]
 and
 \[\text{var}(X + Y) = \text{var}(X) + \text{var}(Y) + 2\text{Cov}(X,Y) \]
 where x is \(M_{cor} \) and Y is the product of the remaining factors used to calculate dose.
 – No assumptions about shape of distribution
 – Accounts for cross correlation
• Based on measurement with 2 detectors
Calculated Uncertainty Results

\[D = M_{\text{cor}} \cdot C_D \cdot k_L \cdot k_E \cdot k_F \]

\[D = D_S \cdot \frac{M_{\text{cor}}}{M_{\text{cor},S}} \cdot \frac{k_L}{k_{L,S}} \cdot \frac{k_E}{k_{E,S}} \cdot \frac{k_F}{k_{F,S}} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_s</td>
<td>0.6</td>
</tr>
<tr>
<td>M_{\text{cor}}</td>
<td>0.8</td>
</tr>
<tr>
<td>k_L</td>
<td>0.3</td>
</tr>
<tr>
<td>k_E</td>
<td>0.8</td>
</tr>
<tr>
<td>k_F</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Reference conditions:
100 cGy
Read after 5 days
Irradiated with Co-60

For doses ranging between 90-110 cGy
For time ranging between 2 and 30 days
These can be expanded to 25-300 cGy and 1-120 days:
The uncertainty increases to **1.7%**
IROC Houston measured results

- **Photons:**
 - IROC-H/Inst: 0.997 +/- 1.6%

- **Electrons:**
 - IROC-H/Inst: 0.999 +/- 1.9%
Summary

- Under well controlled conditions, 2 dosimeters provide ±1.6% uncertainty. – 1 sigma level

- This is consistent with the uncertainty in TLD measurements (±1.3% for 3 detectors) Kirby et al, Med Phys 1992.

- IROC Houston’s 5% criterion is reasonable
Thank You!

- This work was supported by grant CA010953